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Abstract 23 
 24 

Indonesia is currently one of the regions with the highest transformation rate of the land surface 25 

worldwide due to the expansion of oil palm plantations and other cash crops replacing forests 26 

on large scales. Land cover changes, which modify land surface properties, have a direct effect 27 
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on the land surface temperature (LST), a key driver for many ecological functions. Despite the 28 

large historic land transformation in Indonesia toward oil palm and other cash crops and 29 

governmental plans for future expansion, this is the first study so far to quantify the impact of 30 

land transformation in Indonesia on LST. We analyse LST from the thermal band of a Landsat 31 

image and produce a high resolution surface temperature map (30m) for the lowlands of the 32 

Jambi province on Sumatra (Indonesia), a region of large land transformation towards oil palm 33 

and other cash crops over the past decades. We compare LST, albedo, Normalized Differenced 34 

Vegetation Index (NDVI), and evapotranspiration (ET) of seven different land cover types 35 

(forest, urban areas, clear cut land, young and mature oil palm plantations, acacia and rubber 36 

plantations) and show that forests have lower surface temperatures than these land cover types 37 

indicating a local warming effect after forest conversion with LST differences up to 10.09 ± 2.6 38 

ºC (mean ± SD) between forest and clear cut land. The differences in surface temperatures are 39 

explained by an evaporative cooling effect offsetting an albedo warming effect. Our analysis of 40 

the LST trend of the past 16 years based on MODIS data shows that the average daytime surface 41 

temperature of the Jambi province increased by 1.05 ºC, which followed the trend of observed 42 

land cover changes and exceed the effects of climate warming. Our study provides evidence 43 

that the expansion of oil palm plantations and other cash crops leads to changes in biophysical 44 

variables, warming the land surface and thus enhancing the increase in air temperature due to 45 

climate change. 46 

 47 

 48 
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1 Introduction 53 
 54 

Indonesia is one of the regions where the expansion of cash crop monocultures such as acacia 55 

(timber plantation), rubber, oil palm plantations and smallholder agriculture has drastically 56 

reduced the area of primary forest in the past decades (Bridhikitti and Overcamp, 2012; 57 

Drescher et al., 2016; Marlier et al., 2015; Miettinen et al., 2012; Verstraeten et al., 2005). This 58 

large scale conversion of rainforest for agricultural use has been observed on the island of 59 

Sumatra, which has experienced the highest primary rainforest cover loss in all of Indonesia 60 

(Drescher et al., 2016; Margono et al., 2012; Miettinen et al., 2011). Forest cover in the 61 

Sumatran provinces of Riau, North Sumatra and Jambi, declined from 93 to 38% of provincial 62 

area between 1977 and 2009 (Miettinen et al., 2012). These large scale transformations, 63 

observed as land cover change, and land-use intensification have led to substantial losses in 64 

animal and plant diversity, and ecosystem functions and changed microclimatic conditions 65 

(Clough et al., 2016; Dislich et al., 2016; Drescher et al., 2016). Additionally, these changes 66 

directly alter vegetation cover and structure as well as land surface properties such as albedo, 67 

emissivity and surface roughness which affect gas and energy exchange processes between the 68 

land surface and the atmosphere (Bright et al., 2015). 69 

 70 

Replacing natural vegetation with another land cover modifies the surface albedo, which affects 71 

the amount of solar radiation that is absorbed or reflected and consequently alters net radiation 72 

and local surface energy balance. A low or high albedo results in smaller or greater reflection 73 

of shortwave radiation. As a result the higher or lower amounts of net radiation absorption may 74 

rise or lower the surface temperature and change evapotranspiration (Mahmood et al., 2014). 75 

 76 

Changes in land cover also alter surface emissivity, i.e. the ratio of radiation emitted from a 77 

surface to the radiation emitted from an ideal black body at the same temperature following the 78 
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Stefan–Boltzmann law. Emissivity of vegetated surfaces varies with plant species, density, 79 

growth stage, water content and surface roughness (Snyder et al., 1998; Weng et al., 2004). A 80 

change of emissivity affects the net radiation because it determines the emission of longwave 81 

radiation that contributes to radiative cooling (Mahmood et al., 2014).  82 

 83 

Water availability, surface type, soil humidity, local atmospheric and surface conditions affect 84 

the energy partitioning into latent (LE), sensible (H) and ground heat (G) fluxes (Mildrexler et 85 

al., 2011). Surface roughness affect the transferred sensible and latent heat by regulating vertical 86 

mixing of air in the surface layer (van Leeuwen et al., 2011) thereby regulating land surface 87 

temperature (LST). Through its association with microclimate, net radiation and energy 88 

exchange (Coll et al., 2009; Sobrino et al., 2006; Voogt and Oke, 1998; Weng, 2009; Zhou and 89 

Wang, 2011) LST is a major land surface parameter that also influences habitat quality and thus 90 

the distribution of plants and animals and biodiversity. 91 

 92 

The replacement of natural vegetation also changes  evapotranspiration (ET) (Boisier et al., 93 

2014). In case ET is decreased, surface temperatures and fluxes of sensible heat (H) increase. 94 

Vice versa when ET increases, increased LE fluxes lower surface temperatures and decrease H 95 

fluxes (Mahmood et al., 2014). Vegetation structure as reflected by parameters such the 96 

Normalized Difference Vegetation Index (NDVI), Leaf Area Index (LAI) and vegetation height 97 

is in this respect an important determinant of the resistances or conductivities to heat, moisture, 98 

and momentum transfer between the canopy and the atmosphere (Bright et al., 2015) facilitating 99 

the amounts/ratios of sensible heat to water vapour dissipation away from the surface 100 

(Hoffmann and Jackson, 2000).  101 

 102 

Surface albedo, surface temperature, surface emissivity, and indirectly LAI and NDVI are 103 

interconnected through the surface radiation balance. When the land surface is changed 104 

Biogeosciences Discuss., doi:10.5194/bg-2017-203, 2017
Manuscript under review for journal Biogeosciences
Discussion started: 29 May 2017
c© Author(s) 2017. CC-BY 3.0 License.



5 
 

feedback mechanisms involving these biophysical variables control the radiation balance and 105 

the surface temperature. 106 

To understand the effects of land cover changes on LST, the associated biophysical variables 107 

must be evaluated. This can be done through the surface radiation budget and energy 108 

partitioning which unites these biophysical variables directly or indirectly: albedo as direct 109 

determinant of the net solar radiation, NDVI as a vegetation parameter determining the 110 

emissivity which in turn determines the amount of reflected and emitted longwave radiation, 111 

LST directly affecting the amount of emitted longwave radiation from the surface and ET 112 

affecting the amount of energy that is used for surface cooling via evaporating of water. 113 

 114 

The effect of land cover change on LST is dependent on the scale, location, direction and type 115 

of the change (Longobardi et al., 2016).  Several studies showed an increase of the LST after 116 

forest were converted: in China built-up areas and  agricultural land (Zhou and Wang, 2011), 117 

and in crop land and pasture lands (Peng et al., 2014). Similar findings were reported for South 118 

American ecosystems: low vegetation such as grasslands in Argentina were warmer than tall 119 

tree vegetation (Nosetto et al., 2005). In Brazil, the surface temperature increased after the 120 

conversion of natural Cerrado vegetation (a savanna ecosystem) into crop/pasture (Loarie et al., 121 

2011a). Similar effects were also shown for other South American biomes (Salazar et al., 2016). 122 

In a global analysis, Li et al. (2015) showed that the cooling of forests is moderate at mid 123 

latitudes and that Northern boreal forests are even warmer, an indication that the effect of land 124 

cover change on LST varies with the location of the land cover change (Longobardi et al., 125 

2016). Similar studies on the Indonesian Islands are lacking but increases in surface temperature 126 

are expected as an effect of the expansion of oil palm and cash crop land in the recent decades. 127 

 128 

Measuring changes in LST is critical for understanding the effects of land cover changes, but 129 

challenging. LST can be monitored with LST products retrieved from thermal infrared (TIR) 130 
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remote sensing data e.g. the use of the thermal bands of the Moderate Resolution Imaging 131 

Spectrometer (MODIS) onboard the Terra and Aqua satellite (Sobrino et al., 2008), the thermal 132 

band of the Thematic Mapper (TM) onboard the LANDSAT-5 platform (Sobrino et al., 2004, 133 

2008) or Enhanced Thematic Mapper (ETM+) onboard the LANDSAT-7 platform. The 134 

advantage of MODIS data is the availability of readily processed products at high temporal 135 

resolution (daily) at medium (250 – 500 m) to coarse spatial resolution (1000 – 5000 m) scale; 136 

MODIS LST product (MOD11A1/MYD11A1) for example is provided at a daily temporal 137 

resolution with a spatial resolution of 1 km. Landsat data are provided at a higher spatial 138 

resolution (30 m), but its temporal resolution is however limited to 16 days and the retrieval of 139 

LST requires the correction of the satellite observed radiances for atmospheric absorption and 140 

emission (Coll et al., 2009). Besides LST, the connected biophysical variables of the energy 141 

and radiation budget can be derived from the visible and near-infrared (VIS-NIR) bands of 142 

either MODIS or Landsat, making integrated monitoring of the biophysical variables related to 143 

changing land surface possible. In Indonesia, a large proportion of the land use changes is 144 

driven by small holders (Dislich et al. 2016), thus a combination of Landsat (for a fine spatial 145 

resolution) and MODIS (for temporal developments) seems desirable. 146 

 147 

The modification of the physical properties of the land surface influences climate/local 148 

microclimatic conditions via biogeochemical and biophysical processes. Therefore, given 149 

Indonesia’s history of large scale agricultural land conversion and governmental plans to 150 

substantially expand the oil palm production, it is important to study the effect of the expansion 151 

of cash crop areas on the biophysical environment, especially on LST as a key land surface 152 

parameter. These effects have been poorly studied in this region and according to our 153 

knowledge this is the first study to quantify the effects of land use change on LST in Indonesia 154 

We focus on the province of Jambi / Sumatra as it experience large land transformation towards 155 
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oil palm and other cash crops such as rubber plantations in the past and may serve as example 156 

of future changes in other regions. 157 

 158 

Our main objective is to quantify the differences in LST across different land cover types and 159 

to assess the impact of cash crop expansion on the surface temperature of Jambi province (on 160 

Sumatra / Indonesia) in the past decades. With this study we aim to (1) evaluate the use of 161 

Landsat and MODIS satellite data as sources for a reliable estimation of the surface temperature 162 

in a tropical region with limited satellite data coverage by comparing the surface temperatures 163 

retrieved from both satellite sources to each other and against ground observations, (2) to 164 

quantify the LST variability across different land cover types  and (3) the long term effects of 165 

land transformation on the surface temperature against the background of climatic changes and 166 

(4) to identify the mechanisms that explain changes of the surface temperature through changes 167 

in other biophysical variables. In this study we compare the surface temperatures of different 168 

land cover types that replace forests (i.e. oil palm, rubber and acacia plantations, clear cut land 169 

and urban areas) using high resolution Landsat and medium resolution MODIS satellite data 170 

and discuss the differences by taking into account other biophysical variables such as the 171 

albedo, NDVI and evapotranspiration (ET). 172 

 173 

2 Materials and methods 174 

 175 

2.1 Study area 176 

 177 

The study was carried out in the lowlands (approx. 25 000 km2) of the Jambi province (total 178 

area 50 160 km2) on Sumatra, Indonesia, between latitudes 0°30´S and 2°30´S and longitudes 179 

101°E and 104°30´E (Fig. 1). This region has undergone large land transformation towards oil 180 

palm and rubber plantation over the past decades and thus may serve as an example of expected 181 
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changes in other regions of Indonesia (Drescher et al. 2016). The area has a humid tropical 182 

climate with a mean annual temperature of 26.7 ± 0.2 °C (1991 – 2011, annual mean ± SD of 183 

the annual mean), with little intra-annual variation. Mean annual precipitation was 2235 ± 381 184 

mm and a dry season with less than 120 mm monthly precipitation usually occurred between 185 

June and September (Drescher et al., 2016). Details about the study area can be found in 186 

(Drescher et al., 2016). 187 

 188 

For this study, we used two data sets of different plot sizes. For the first data set, we delineated 189 

28 large plots (ranging from 4 to 84 km2) of 7 different land cover types (Forest (FO), Rubber 190 

(RU), Acacia Plantation Forest (PF), Young oil palm plantation (YOP), Mature Oil Palm 191 

Plantation (MOP), Urban area (UB) and Clear Cut areas (CLC)) (Fig. 1). The delineation was 192 

based on visual interpretation in combination with information from field work, which was 193 

carried out between October – December 2013. The large size of the plots was necessary to 194 

make a comparison between MODIS and Landsat images (see section satellite data). For the 195 

second data set, we selected within and outside these 28 large plots 49 smaller plots (between 196 

50 × 50 m and 1000 × 1000 m) (Fig. 1) which allowed us to increase the number of plots to use 197 

when analysing Landsat images. These small plots were used to extract surface temperature 198 

(LST), Normalized Difference Vegetation Index (NDVI), albedo (α) and evapotranspiration 199 

(ET) from a high resolution Landsat satellite image (see section satellite data) for the 7 different 200 

land cover types of interest. 201 
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 202 
Fig. 1 Geographic location of the study area. Jambi province on the Sumatran Island of 203 

Indonesia (Figs. 1a and 1b). The background of the map (Fig. 1c) is a digital elevation model, 204 

showing that the plots are located in the lowlands of the Jambi province. The large rectangles 205 

are the 28 different land cover types (Forest, Young and Mature Oil palm, Rubber, Urban area, 206 

Acacia Plantation Forest and Clear Cut land), the small squares are the locations of the 49 small 207 

plots of the 7 different land cover types. Abbreviations: CLC = Clear cut land, UB = Urban 208 

area, YOP = Young oil palm plantation, MOP = Mature Oil Palm plantation, PF = Acacia 209 

plantation forest, RU = Rubber plantation, FO = Forest. 210 

 211 

2.2 Meteorological data 212 
 213 

Air temperature and relative air humidity were measured at four reference meteorological 214 

stations located in open areas within the area of study (Drescher et al., 2016), with 215 

thermohygrometers (type 1.1025.55.000, Thies Clima, Göttingen, Germany) placed at 2m 216 

height. Measurements were taken every 15 s and then averaged and stored in a DL16 Pro data 217 
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logger (Thies Clima, Göttingen, Germany) as 10 min mean, from February 2013 to December 218 

2015. We used the air temperature from the meteorological stations to compare to MODIS air 219 

temperatures (MOD07_L2). The relative air humidity was used as an input parameter for 220 

NASA’s online atmospheric correction (ATCOR) parameter tool to derive parameters to correct 221 

Landsat thermal band for atmospheric effects (see Satellite data). We also used air temperature 222 

and relative humidity from two eddy covariance flux towers located in the study area (Meijide 223 

et al., 2017) one in a young oil palm plantation (two years old, S 01°50.127', E 103°17.737'), 224 

and the other one in a mature oil palm plantation (twelve years old, S 01°41.584', E 225 

103°23.484'). At these flux towers, air temperature and relative humidity were measured above 226 

the canopy respectively with the same instruments as in the reference meteorological stations 227 

(see Meijide et al. (2017), for description of methodology). In the flux tower located in the 228 

mature oil palm plantation, we also measured surface canopy temperature between August 2014 229 

and December 2015, which was compared to MODIS LST estimates from the same period. 230 

Measurements of canopy temperature were performed with two infrared sensors (IR100) 231 

connected to a data logger, (CR3000) both from Campbell Scientific Inc. (Logan, USA). For a 232 

regional coverage we used ERA Interim daily air temperature grids 233 

(http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/; (Dee et al., 2011) from 234 

2000 – 2015 at 0.125 degrees resolution to study the annual air temperature trend in this period. 235 

 236 

2.3 Satellite data 237 

 238 

A Landsat 7 ETM+ VIS/TIR 30 m resolution surface reflectance image with low cloud cover, 239 

acquired at 10:13 hours (local time) on 19 June 2013 covering the lowland area of the Jambi 240 

province (path 125, row 61) was used in this study. Like all Landsat 7 ETM+ images acquired 241 

after 31 may 2003, the image we used was affected by a scan line error causing a data loss of 242 

about 22% (http://landsat.usgs.gov/products_slcoffbackground.php). Most selected plots were 243 
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located in the center of the image and thus not affected by the data loss, e.g. the forest plots 244 

located at the edges of the scan line error zone faced minimal data loss because they were large 245 

enough.  246 

We also downloaded the tile h28v09 of the MODIS Terra (MOD) and Aqua (MYD) daily 1km 247 

Land Surface Temperature and Emissivity products (MOD11A1 and MYD11A1 Collection-5) 248 

and MODIS 16-days 500 m Vegetation Indices NDVI/EVI product (MOD13A1 Collection-5) 249 

from 05 March 2000 till 31 December 2015 for Terra data and from 8 July 2002 till 31 250 

December 2015 for Aqua data. We downloaded other supporting satellite data such as the 251 

MODIS Atmospheric Profile product (MOD07_L2) and the MODIS Geolocation product 252 

(MOD03). All MODIS data were reprojected to WGS84, UTM zone 48 South using the MODIS 253 

Reprojection Tool (MRT). The quality of the MODIS data was checked using the provided 254 

quality flags and only pixels with the highest quality flag were used in the analysis. 255 

 256 

2.4 Retrieval of biophysical variables from Landsat 7 ETM+ VIS/TIR images 257 

 258 

 259 

 NDVI 260 

 261 

NDVI was derived using the reflectances corrected for atmospheric effects in the red (ρRED, 262 

band 3 Landsat 7 ETM+) and near infrared (ρNIR, band 4 Landsat 7 ETM+) bands, with:  263 

    264 

 265 

NDVI = 
 

 
           (1) 266 

 267 
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 Surface albedo 268 

 269 

The surface albedo (α) was computed using the equation of Liang (2000) for estimating 270 

broadband albedo from Landsat surface reflectance bands, with: 271 

 272 

α = 0.3141 ρ1 + 0.1607 ρ3 + 0.369 ρ4 + 0.1160 ρ5 + 0.0456 ρ7 – 0.0057   (2) 273 

 274 

where ρ1, ρ3, ρ4, ρ5 and ρ7 are the Landsat 7 ETM+ surface reflectance bands (corrected for 275 

atmospheric effects). 276 

 277 

 Surface temperature (LST) 278 

 279 

LST was derived following the method proposed by Bastiaanssen (2000), Bastiaanssen et al. 280 

(1998a), Coll et al. (2010) and Wukelic et al. (1989) for computing the surface temperature 281 

from the thermal infrared band (TIR, band 6) of Landsat (Supporting information, S1). The 282 

thermal infrared band (TIR, band 6) was first converted to thermal radiance (L6, W/m2/sr/µm) 283 

and then to atmospherically corrected thermal radiance (Rc, W/m2/sr/µm) following the method 284 

described by Wukelic et al. (1989) and Coll et al. (2010), and using the atmospheric parameters 285 

obtained on NASA’s online Atmospheric Correction Calculator (Barsi et al., 2003, 2005) 286 

(supporting information, S2). The surface temperature (LST, °K) was computed through the 287 

following equation similar to the Planck equation, as in Coll et al. (2010) and Wukelic et al. 288 

(1989): 289 

 290 
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LST =  ∙            (3) 291 

 292 

where εNB is the emissivity of the surface obtained from the NDVI (Supporting information, 293 

Table S1), k1 (= 666.09 mW/cm2/sr/μm) and k2 (= 1282.71 °K) are sensor constants for 294 

converting the thermal radiance obtained from band 6 of Landsat 7 to surface temperature. 295 

The surface temperature derived from Landsat thermal band was compared with a MODIS LST 296 

product that was acquired on the same day at 10:30 am local time. For this, the Landsat LST 297 

image was resampled to MODIS resolution to enable a pixel to pixel comparison, followed by 298 

extracting the average LST of 7 land cover types using the data set containing the large 299 

delineated plots (Fig. 1). 300 

 301 

 Evapotranspiration (ET) 302 

 303 

Based on the Surface Energy Balance Algorithm for Land (SEBAL) (Bastiaanssen, 2000; 304 

Bastiaanssen et al., 1998a, 1998b) we estimated ET (mm/hr) from latent heat fluxes (LE, W/m2) 305 

which were computed as the residual from sensible (H, W/m2) and ground (G, W/m2) heat 306 

fluxes subtracted from net radiation (Rn, W/m2) as: 307 

 308 

LE = Rn – G – H            (4) 309 

 310 

We calculated Rn as the sum of incoming shortwave and longwave radiation, minus the 311 

reflected shortwave and longwave radiation and the emitted longwave radiation (equation 5). 312 

The surface albedo, surface emissivity and surface temperature determine the amounts of 313 

incoming and reflected radiation: 314 

 315 
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Rn = (1 – α) Sd↓ + εaσTa
4 – (1 – ε0)εaσTa

4 – ε0σLST4      (5) 316 

 317 

Where Sd↓ is the incoming shortwave solar radiation (W/m2) at the surface; α is the surface 318 

albedo (equation 2); ε0 is the surface emissivity (-); εa is the atmospheric emissivity (-); σ is the 319 

Stephan-Boltzmann constant (5.67 × 10-8 W/m2/K4); LST is the surface temperature (K, 320 

equation 3); Ta is the near surface air temperature (K). The surface emissivity (ε0) is derived 321 

from the NDVI and is described in the supporting information (Table S1). The average 322 

atmospheric emissivity (εa) is estimated with the model of Idso and Jackson, (1969): 323 

 324 

εa = 1 – 0.26 · exp {(-7.77 × 10-4) · (273.15 – Ta)2}       (6) 325 

 326 

Ground heat fluxes (G, W/m2) were derived as a fraction of Rn from an empirical relationship 327 

between LST, α, and NDVI (Bastiaanssen, 2000) as: 328 

 329 

G = Rn ·
  .

 · (0.0038α + 0.0074α ) · (1 − 0.98NDVI )      (7) 330 

 331 

In SEBAL Sensible heat flux (H, W/m2) was calculated as: 332 

 333 

H =  ρCp   =  ρCp
   

         (8) 334 

 335 

Where ρ is the air density (1.16 kg/m3); Cp is the specific heat of air at constant pressure (1004 336 

J/kg/K); rah is the aerodynamic resistance to heat transport (s m-1); a and b are regression 337 

coefficients which are determined by a hot extreme pixel (where LE = 0 and H is maximum) 338 

and a cold extreme pixel (where H = 0 and LE is maximum). The aerodynamic resistance to 339 

heat transport, rah, is calculated through an iterative process with air temperature measured at 2 340 
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m as input. SEBAL is described in Bastiaanssen (2000) and Bastiaanssen et al. (1998a, 1998b). 341 

The application of SEBAL in this research is briefly described in the supporting information 342 

(S3: ET from satellite images). 343 

 344 

2.5 Local short term differences between different land cover types 345 

 346 

From the created LST, NDVI, Albedo and ET images we extracted the average values of the 347 

different land cover classes. For this we used the dataset containing the small 49 delineated 348 

plots covering 7 different land cover types (Fig. 1). The average effect of land transformation, 349 

i.e. the change from forest to another non-forest land cover type, on the surface temperature 350 

was evaluated as (cf. Li et al. (2015)) :  351 

 352 

∆LST = LSTnon-forest – LSTforest         (1) 353 

 354 

A negative ∆LST indicates a cooling effect and positive ∆LST indicates a warming effect of 355 

the non-forest vegetation compared to forest. The same procedure was applied in evaluating the 356 

effect of land transformation on the NDVI, albedo and ET.  357 

 358 

2.6 Effects of land cover change on the provincial surface temperature in the past decades 359 

 360 

To analyse the long term effects on the provincial scale we used the MODIS daily LST time 361 

series (MOD11A1 and MYD11A1) from 2000 – 2015. MOD11A1 provides LST for two times 362 

of the day: 10:30 am and 10:30 pm and we used the times series between 2000 and 2015. 363 

MYD11A1 provides LST for 1:30 am and 1:30 pm and is available from 8 July 2002; we used 364 

complete years in our analysis and therefore used the MYD11A1 time series from 2003 – 2015. 365 

We calculated the mean annual LST at four different times of the day (10:30 am, 1:30 pm, 366 
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10:30 pm and 1:30 am) between 2000 and 2015 for the lowland of the Jambi from the MODIS 367 

daily LST time series (MOD11A1 and MYD11A1). To do so (1) we calculated for each pixel 368 

the average LST pixel value using only the best quality pixels for every year; (2) from these 369 

pixels we made a composite image (n = 16, one for each year) for the province and (3) from 370 

each composite image we calculated the mean annual lowland provincial temperature as the 371 

average of all the pixels that are enclosed by a zone delineating the lowland of the Jambi 372 

province. We performed the same analysis with the MODIS 16-day NDVI product (2000 – 373 

2015) and the ERA daily temperature grid (2000 – 2015) to compare the annual trends of LST, 374 

NDVI and air temperature of the province. The average provincial LST and NDVI were 375 

compared to the mean LST and NDVI of a selected forest that remained undisturbed forest 376 

during the 2000 – 2015 period. 377 

 378 

2.7 Statistical analysis 379 

 380 

For comparison of the Landsat derived LST and the MODIS LST we analyzed the statistical 381 

relationships with the coefficient of determination (R2), the root mean square error (RMSE), 382 

the mean absolute error (MAE) and the bias (Bias):  383 

RMSE = 
∑ ( )

          (9) 384 

 385 

Bias = 
∑ ( )

          (10) 386 

 387 

MAE = 
∑ | |

          (11) 388 

 389 
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Where Oi is MODIS LST, Ei is the Landsat surface temperature, and N is the number of pixels 390 

compared. Model type 2 linear regression was applied for fitting the relation between MODIS 391 

LST and Landsat LST. 392 

We tested the relation between the biophysical variables LST (or L6 and Rc, both as pre- or 393 

intermediate products before obtaining LST), albedo (α), NDVI and ET with correlation 394 

analysis and a multiple linear regression was applied to analyse the effects of the biophysical 395 

variables on the LST. We used the model: LST (or Rc or L6) ~ α + NDVI + ET, and used  R2 396 

and standardized β-coefficients to evaluate the strength of the biophysical variables in 397 

predicting the LST. 398 

 399 

3 Results 400 

 401 

3.1 Landsat LST compared to MODIS LST 402 

 403 

Landsat and MODIS images showed similar spatial patterns of LST(Fig. 2). In both images the 404 

hot areas correspond to the known clear cut areas, urban areas or other sparsely vegetated areas, 405 

the cooler areas correspond to vegetated areas such as forest, plantation forests and mature oil 406 

palm plantations. The coarse resolution scale of MODIS (1000 m for LST) allows a large 407 

regional coverage of the study area but does not allow to retrieve detailed information on small 408 

patches (smaller than 1 km2). On the other hand, Landsat 7 image allows a detailed study of 409 

patches that are small enough (as small as 30 x 30 m2), but is affected by the scan line error 410 

causing data loss at the edges of the image. In both MODIS and Landsat images clouds and 411 

cloud shadows were removed and therefore lead to data gaps in the images. 412 

 413 

 414 

 415 
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 416 
            417 

  418 
Fig. 2 MODIS LST image (top) compared with Landsat LST image (bottom). Cloud cover and 419 

cloud shadow cover resulted in data gaps (No data). The difference in acquisition time between 420 

the images is 15 minutes. The square in the MODIS image is the area that is covered by the 421 

Landsat tile (path 125, row 61). Both satellite images were acquired on 19 June 2013. 422 

 423 

Landsat derived LST correlated well with MODIS LST (R2 = 0.82; p < 0.001; Fig. 3) with a 424 

RMSE of 1.83 ºC. The 7 land cover types had distinctive LSTs and the observed differences 425 
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between these land cover types were consistent in both images. The non-vegetated surfaces 426 

(Clear cut land (CLC) and Urban areas (UB)) had higher surface temperatures than the 427 

vegetated surface types (FO, YOP, MOP, PF and RU). Clear cut land had the highest surface 428 

temperature of all compared land cover types, followed by urban areas whereas the vegetated 429 

land cover types had lower surface temperatures: LSTCLC (39.71 ± 2.01 °C ) > LSTUB (35.79 ± 430 

1.26 °C) > LSTYOP (30.95 ± 0.72 °C) > LSTPF (30.25 ± 0.67 °C) > LSTMOP (28.98 ± 0.75 °C) 431 

> LSTRU (27.78 ± 0.89 °C) > LSTFO (27.57 ± 1.41 °C) (Landsat LST, Fig. 3). The same trend 432 

was derived from the MODIS image but with higher surface temperatures, except for CLC: 433 

LSTCLC (37.67 ± 1.75 ºC) > LSTUB (36.33 ± 1.57 °C) > LSTYOP (31.73 ± 0.85 ºC) > LSTMOP 434 

(30.67 ± 0.88 ºC) > LSTPF (29.92 ± 0.93 ºC) > LSTRU (29.60 ± 0.36 ºC) > LSTFO (29.21 ± 0.40 435 

ºC) (MODIS LST, Fig. 3). 436 
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 437 

Fig. 3 Average surface temperature (LST) and standard deviation (SD) of 7 land cover types 438 

derived from Landsat thermal image compared with the mean and SD of MODIS LST.  439 

CLC = Clear cut land, UB = Urban areas, YOP = young oil palm plantation, PF = Acacia 440 

Plantation Forest, MOP = Mature Oil palm plantation, FO = Forest, RU = Rubber plantation. 441 

The dashed line is the theoretical 1:1 line, the solid lines are the Linear Model type 2 regression 442 

line (black) and the confidence limits of the regression line (red). Landsat and MODIS images 443 

were acquired on 19 June 2013, Landsat at 10:13 am local time, MODIS at 10:30 am local time. 444 

Landsat pixels (30 m) were resampled to MODIS pixel resolution (926 m) to make a pixel to 445 
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pixel comparison between the two sources possible. RMSE is the root mean squared error, MAE 446 

is mean absolute error. 447 

 448 

3.2 Local short term differences between different land cover types 449 

 450 

The ∆LST between RU, MOP, PF, YOP, UB and CLC land cover types and FO were all 451 

positive, meaning that all other land cover types were warmer than forests (Fig. 4a & Supporting 452 

Information S4 and S5). RU and MOP were 0.4 ± 1.5 °C and 0.8 ± 1.2 °C warmer than forest, 453 

respectively. PF and YOP were much warmer than forests (∆LSTPF – FO = 2.3 ± 1.1 °C, ∆LSTYOP 454 

– FO = 6.0 ± 1.9 °C). The largest ∆LSTs were between forest and the non-vegetated land cover 455 

types, i.e. UB (∆LST = 8.5 ± 2.1 °C) and CLC (∆LST = 10.9 ± 2.6 °C). The LST differences 456 

were significant (p < 0.05, post-hoc Tukey’s HSD test), except between RU and FO (p = 0.78, 457 

post-hoc Tukey’s HSD test (Supporting Information S6, Table S6.1 & table S6.2). 458 

 459 

Similar differences were found for the ∆NDVI between forest and other land covers (Fig. 4b). 460 

The negative ∆NDVI indicates that the non-forest land cover types had lower NDVI than forest. 461 

∆NDVI between FO and RU, MOP, PF and YOP were small (between – 0.01 ± 0.02 462 

(∆NDVIMOP – FO) and – 0.12 ± 0.06 (∆NDVIYOP - FO). The largest ∆NDVIs were between forest 463 

and the non-vegetated land cover types, i.e. UB and CLC (∆NDVI = – 0.42 ± 0.11 and – 0.41 464 

± 0.08, respectively). All ΔNDVIs were significant (p < 0.05, post-hoc Tukey’s HSD test). 465 

 466 

The difference in albedo (∆Albedo) between forest and the other land covers was very small 467 

(Fig. 4c), with ∆Albedo values between – 0.03 ± 0.01 (∆AlbedoPF - FO) and 0.03 ± 0.02 468 

(∆AlbedoYOP - FO). These differences were significant (p < 0.05, post-hoc Tukey’s HSD test). 469 

PF had a lower albedo than forest (∆AlbedoPF - FO = – 0.03 ± 0.01), while the other land cover 470 

types had a higher albedo than forest.  471 
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 472 

All land covers had lower ET than forest. RU, MOP and PF had slightly lower ET than FO 473 

(∆ETRU-FO = – 0.03 ± 0.04, ∆ETMOP-FO = – 0.03 ± 0.03 mm/hr, ∆ETPF-FO = – 0.04 ± 0.03 mm/hr) 474 

(Fig. 4d). YOP, UB and CLC had much lower ET values than forests: ∆ETYOP-FO = – 0.18 ± 475 

0.04 mm/hr, ∆ETUB-FO = – 0.23 ± 0.04 mm/hr, ∆ETCLC-FO = – 0.26 ± 0.06 mm/hr). The ΔETs 476 

were significant (p < 0.05, post-hoc Tukey’s HSD test). 477 

 478 

 479 

Fig. 4 Differences (mean ± SD) in surface temperature (∆LST), normalized difference 480 

vegetation index (∆NDVI), Albedo (∆Albedo) and Evapotranspiration (∆ET) between other 481 
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land covers (RU, MOP, PF, YOP, UB and CLC) and forest (FO) in the Jambi province, derived 482 

from the Landsat LST image acquired on 19 June 2013 at 10:13 am local time. 483 

 484 

Albedo had the weakest influence on the LST (ρ = 0.25, p < 0.05) (Table 2) than NDVI and 485 

ET. As the thermal radiance band (L6) and the atmospherically corrected thermal band (Rc) 486 

were the basis for the LST calculation, the high correlation between L6 and NDVI (ρ = – 0.87, 487 

p < 0.05) and between L6 and ET (ρ = – 0.98, p < 0.05) resulted in a high correlation between 488 

LST and NDVI (ρ = – 0.88) and between LST and ET (ρ = – 0.98). The analysis showed that 489 

albedo, NDVI and ET were all significant predictors of LST (F(3, 41586) = 1 × 106, p < 0.05). ET 490 

was the strongest predictor of LST (stand. β = – 1.11, p < 0.05). Albedo (stand. β = – 0.19, p < 491 

0.05, resp.) and NDVI (stand. β = – 0.19, p < 0.05) were weaker predictors of LST.  492 

 493 

Table 2 Statistical analysis between biophysical variables (albedo (α), NDVI and ET) and 494 

Spectral Radiance band (L6), corrected thermal band (Rc) and Landsat surface temperature 495 

(LST). 496 

Model   ρ R2 β Stand. β Model fit (R2) F-statistics 

 
L6 ~ α + NDVI + ET 
  

α  0.26  0.05 -2.94 -0.19  F (3, 41586) =  

NDVI -0.87  0.10  0.23  0.11 0.99 1.10×106, *** 

ET -0.98  1.13  -4.00 -1.16     

 
Rc ~ α + NDVI + ET 
  

α 0.25  0.05 -4.88 -0.20  F (3, 41586) =  

NDVI -0.88 0.04 0.16 0.05 0.99 1.79×106 , *** 

ET -0.98 1.00 -6.21 -1.10     

 
LST ~ α + NDVI + ET  
  

α  0.25  0.05 -34.01 -0.19  F(3, 41586) = 

NDVI -0.88  0.05  1.30  0.05 0.99  2.3×106, *** 

ET -0.98  1.00 -43.53 -1.11     
***: p = 2×10-16 497 

LM: Multiple linear regression analysis between LST (or L6 or Rc) and 3 biophysical variables: 498 

Albedo (α), NDVI and ET. ρ = correlation coefficient; R2: R-squared of the components; β = 499 

regression coefficient of the component; stand. β = standardized β; Model fit (R2): overall model 500 
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fit of the multiple linear regression. The values in brackets are for the analysis between the 501 

biophysical variables and the corrected thermal band (Rc). 502 

 503 

A separate analysis (Table S6.3, Supporting information S6) showed that ET was a strong 504 

predictor of LST for each land cover type in this study and that NDVI and albedo were minor 505 

predictors of LST.  506 

 507 

3.3 Effects of land-use change on the provincial surface temperature in the past decades 508 

 509 

The average annual LST of the province was characterized by a fluctuating but increasing trend 510 

during daytimes (Fig. 5a and 5b) between 2000 and 2015. The average morning LST (10:30 511 

am) increased by 0.07 ºC per year (R2 = 0.59; p < 0.0001), the midday afternoon LST (13:30 512 

local time) increased by 0.13 °C per year (R2 = 0.35; p = 0.02) between 2003 and 2015. While 513 

the daytime LST showed a clear increase, the night and evening LST (10:30 pm and 1:30 am, 514 

Fig. 5c and 5d) trends were small showing a decrease of – 0.02 °C (R2 = 0.29; p = 0.02) and – 515 

0.01 °C (R2 = 0.05; p = 0.51) per year, respectively. The observed LST trends resulted in a total 516 

LST increase of 1.05 °C and 1.56 °C in the morning (10:30 am) and afternoon (1:30 pm) 517 

respectively and a total decrease of the province LST of 0.3 °C (10:30 pm) and 0.12 °C (1:30 518 

am) at night over the time period 2000 to 2015. 519 

 520 

In order to separate the effect of land use change from global climate warming, we used a site 521 

constantly covered by forest over that period (from the forest sites we used in this study) as a 522 

reference  not directly affected by land cover changes. That site showed less changes in LST 523 

than the entire province:  only the mean morning LST (10:30 am) had a significant but small 524 

trend with an increase by 0.03 °C per year (R2 = 0.21, p < 0.05) resulting in a total LST increase 525 

of the province of 0.45 °C between 2000 and 2015 (Fig. 5a). This LST warming is much smaller 526 
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than the overall warming at provincial level of 1.05 °C. The LST time series at other times 527 

showed no significant trends: the mean afternoon LST (1:30 pm) with -0.05 °C per year (R2 = 528 

0.01, p = 0.31) (Fig. 5b), the night and evening LST with 0.01°C per year (Fig. 5c and 5d, p = 529 

0.19 and p = 0.65, respectively). 530 

 531 

The mean annual NDVI of the province decreased by 0.002 per year which resulted in a total 532 

NDVI decrease of 0.03 (R2 = 0.34; p = 0.01; Fig. 5e). The NDVI of the forest showed a small 533 

but not significant increase of 0.001 per year (R2 = 0.04, p = 0.23) (Fig. 5e) fluctuating around 534 

an NDVI of 0.84. 535 

 536 

The mean annual midday air temperature (at 1:00 pm, local time, Fig. 5f) and the mean annual 537 

night air temperature (at 1:00 am, local time) increased every year by 0.05 °C and 0.03 °C, 538 

respectively resulting in a total air temperature increase of 0.75 °C (R2 = 0.66, p < 0.0001) and 539 

0.45 °C (R2 = 0.32, p = 0.014) between 2000 and 2015 (Fig. 5f). 540 
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 541 

Fig 5. Mean annual LST (a – d), mean annual NDVI (e) and mean annual air temperature trends 542 

(f) in the Jambi province between 2000 and 2015 derived from MODIS LST (5a. 10:30 am, 5b. 543 

1:30 pm, 5c. 10:30 pm and 5d. 1:30 am, local time), MODIS NDVI and ERA Interim Daily air 544 

temperature (1:00 am and 1:00 pm, local time) data sets respectively. Grey-shaded areas are the 545 

confidence intervals of the means, blue-shaded areas are the confidence intervals of the 546 

regression lines. MODIS LST time series for 1:30 pm and 1:30 am were available from the mid 547 

of 2002; for this reason we used the complete years from 2003 till 2015. 548 

 549 

4 Discussion 550 
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 551 

4.1 Landsat LST compared to MODIS LST 552 

 553 

In our study we retrieved the surface temperature from a Landsat image and compared this with 554 

MODIS LST. Our results showed a good agreement between both LSTs (Fig. 3), which is 555 

comparable to other studies and thus gives confidence in our analysis. Bindhu et al. (2013) 556 

found also a close relationship between MODIS LST and Landsat LST using the same 557 

aggregation resampling technique as our method and found R2 of 0.90, a slope of 0.90, and an 558 

intercept of 25.8 for LST, compared to our R2 of 0.8, slope of 1.35 and intercept of –11.58 (Fig. 559 

3). Zhang and He (2013) validated Landsat LST with MODIS LST and also found good 560 

agreements (RMSD 0.71 – 1.87 ºC) between the two sensors, where we found a RMSE of 1.71 561 

ºC. Nevertheless, there still are differences and slope versatility between the two satellite 562 

sources. These differences are typically caused by differences between MODIS and Landsat 563 

sensors in terms of (a) different sensor properties e.g. spatial and radiometric resolution and 564 

sensor calibration; (b) geo-referencing and differences in atmospheric corrections (Li et al., 565 

2004); and (c) emissivity corrections i.e. the use of approximate equations to derive the 566 

emissivity from the NDVI from Landsat’s Red and NIR bands. Li et al. (2004) and Vlassova et 567 

al. (2014) identified these same factors in their comparison of ASTER LST with MODIS LST 568 

and Landsat LST with MODIS LST, respectively. Vlassova et al. (2014) found good 569 

agreements between MODIS and Landsat LST with MODIS LST to be higher than Landsat 570 

LST, which they attributed to the delay of 15 minutes in acquisition time between MODIS and 571 

Landsat. MODIS LST is measured 15 minutes later and our results showed that MODIS LSTs 572 

were indeed higher than Landsat LST. A comparison of MODIS LST with locally measured 573 

canopy surface temperatures during the overpass time of MODIS also showed agreement 574 

(Supporting information S7, Figure S7.1). The slope was possibly due to differences in 575 
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instrumentation and emissivity corrections and to scale issues, still this comparison could 576 

corroborate the quality check of MODIS LST. 577 

As the MODIS LST product is proven to be accurate within 1 ºC  (Silvério et al., 2015; Wan et 578 

al., 2004) and has been intensively validated, the use of MODIS LST was a proper way to assess 579 

the quality of our Landsat LST. 580 

 581 

The errors from the different sources (such as atmospheric correction, emissivity correction, 582 

resampling Landsat to MODIS resolution) are difficult to quantify. When we tested the impact 583 

of atmospheric correction and emissivity errors on the LST from Landsat retrieval we found 584 

that: (a) the overall patterns across different land use types did not change, (b) emissivity was 585 

the most important factor but the effects on LST retrieval were small and (c) errors due to 586 

atmospheric correction parameters were small because there were small differences between 587 

default Atmospheric correction (ATCOR) parameters and ATCOR parameters derived with 588 

actual local conditions (relative humidity (RH), air pressure and air temperature). Following 589 

the method of Coll et al. (2009) and Jiang et al. (2015) we show that the use of the online 590 

atmospheric correction parameter calculator is a good option provided that RH, air temperature 591 

and air pressure are available. We additionally compared locally measured air temperatures 592 

with MODIS air temperature and found a good agreement (Supporting information S8, Figure 593 

S8.1), which served as a verification that we used a correct air temperature for the atmospheric 594 

correction parameter calculator. 595 

Overall, our comparison of LST from Landsat against LST from MODIS as well as against 596 

ground observation suggests that we are able to retrieve meaningful spatial and temporal 597 

patterns of LST in Jambi province. 598 

 599 

4.2 LST patterns across different LULC types 600 

 601 
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The land cover types in our study covered a range of land surface types that develop after forest 602 

conversion. This is the first study in this region that includes oil palm and rubber as land use 603 

types that develop after forest conversion. The coolest temperatures were at the vegetated land 604 

cover types while the warmest surface temperatures were on the non-vegetated surface types 605 

like urban areas and bare land. Interestingly, the oil palm and rubber plantations were only 606 

slightly warmer than the forests whereas the  young oil palm plantations had clearly higher LST 607 

than the other vegetated surfaces. For other parts of the world, Lim et al. (2005, 2008), Fall et 608 

al. (2010) and Weng et al. (2004) also observed cooler temperatures for forests and the highest 609 

surface temperatures for barren and urban areas.  610 

In Indonesia, land transformation is often not instantaneous from forest to oil palm or rubber 611 

plantation, but can be associated with several years of bare or abandoned land in-between (Sheil 612 

et al., 2009). Oil palm plantation typically have a rotation cycle of 25 years, resulting in 613 

repeating patterns with young plantations (Dislich et al., 2016). Given the large differences in 614 

LST between forests and bare soils or young oil palm plantations that we observed, a substantial 615 

warming effect of land transformation at regional scale is expected.  616 

 617 

 618 

4.3 Drivers of local differences between different land cover types 619 

 620 

All land cover types (except Acacia Plantation Forests) had a higher albedo than forest, 621 

indicating that these land cover types absorbed less incoming solar radiation than forests. 622 

Nevertheless, these land cover types were warmer than forests, suggesting that the albedo was 623 

not the dominant variable explaining LST. Indeed, the statistical analysis showed that ET ~ 624 

LST had a higher correlation than albedo ~ LST. The ΔETs were significant, underlying that 625 

despite their higher albedo all land cover types had higher LSTs than forests due to lower ET 626 

rates than forests. Vice versa, forests that absorb more solar radiation due to the lower albedo, 627 
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have lower LST due to the higher ET they exhibit, hereby identifying evaporative cooling as 628 

the main determinant of regulating the surface temperature of all vegetation cover types (Li et 629 

al., 2015). 630 

 631 

Both observational and modeling studies carried out in other geographic regions and with other 632 

trajectories support our observations. Observational studies in the Amazonia by Lawrence and 633 

Vandecar (2015) on the conversion of natural vegetation to crop or pasture land showed a 634 

surface warming effect. Salazar et al. (2015) provided additional evidence that conversion of 635 

forest to other types of land use in the Amazonia cause significant reductions in precipitation 636 

and increases in surface temperatures.  637 

Alkama and Cescatti (2016) and earlier studies by Loarie et al. (2011a, 2011b) showed that 638 

tropical deforestation may increase LST, croplands in the Amazonian regions were also warmer 639 

than forests through the reduction of ET (Ban-Weiss et al., 2011; Feddema et al., 2005) and that 640 

the climatic response strongly depends on changes in energy fluxes rather than on albedo 641 

changes (Loarie et al., 2011a, 2011b). A study by Silvério et al. (2015) indeed found that 642 

tropical deforestation changes the surface energy balance and water cycle and that the 643 

magnitude of the change strongly depends on the land uses that follow deforestation. They 644 

found the LST over croplands 6.4 ºC higher and over pasture lands 4.3 ºC higher compared to 645 

the forest they replaced, caused by energy balance shifts. Ban-Weiss et al. (2011) and Davin 646 

and de Noblet-Ducoudré (2010) added that in addition to the reduction of ET, the reduction of 647 

surface roughness most likely enhanced the substantial local warming. 648 

 649 

Also for non-Amazonian regions the replacement of forests by crops resulted in changes similar 650 

to our observations. In temperate Argentina, Houspanossian et al. (2013) found that the 651 

replacement of dry forests by crops resulted in an increase of albedo and still the forests 652 

exhibited cooler canopies than croplands. The cooler canopies were a result of the higher 653 
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aerodynamic conductance that caused the capacity of tree canopies to dissipate heat into the 654 

atmosphere and that both latent and sensible heat fluxes operate simultaneously cooling forest 655 

canopies Houspanossian et al. (2013). 656 

 657 

In a global analysis Li et al. (2015) showed that tropical forests generally have a low albedo, 658 

but still the net energy gain caused by solar energy absorption is offset by a greater latent heat 659 

loss via higher ET and that in the tropical forests the high ET cooling completely offsets the 660 

albedo warming. For China, this cooling effect was also shown by Peng et al. (2014) who 661 

compared LST, albedo and ET of plantation forests, grassland and cropland with forests.  662 

 663 

For the USA,  Weng et al. (2004) and for China, Yue et al. (2007)  used NDVI as a vegetation 664 

abundance indicator and also found areas with a high mean NDVI to have lower LST than areas 665 

with a low mean NDVI, all suggesting that vegetation abundance is an important factor in 666 

controlling the LST through higher ET rates. Our result support their assumptions by showing 667 

the high correlation between NDVI – LST and ET – LST.  668 

 669 

Our findings are also supported by modelling studies. Beltrán-Przekurat et al. (2012) found for 670 

the Southern Amazon that conversion of wooded vegetation to soy bean plantations caused an 671 

increase of the LST due to decreased latent heat and increased sensible heat fluxes. Climate 672 

models also show the same warming trends and land surface modelling also project an increase 673 

in surface temperatures following deforestation in the Brazilian Cerrado (Beltrán-Przekurat et 674 

al., 2012; Loarie et al., 2011b). In a global analysis, Pongratz et al. (2006) showed the LST 675 

increase of forest to cropland or pasture transitions, also driven by reduced roughness length, 676 

increased aerodynamic resistance, and that the temperature response is intensified in forest to 677 

clear land or bare land transitions (1.2 ºC increase). Similar to observational studies, the 678 
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modelling results of Bathiany et al. (2010) show that ET is the main driver of temperature 679 

changes in tropical land areas.  680 

 681 

In understanding the effects of deforestation on biophysical variables in Indonesia, our study 682 

identifies the following mechanisms: (a) reduction of ET decreases surface cooling, (b) reduced 683 

surface roughness reduces air mixing in the surface layer and thus vertical heat fluxes, (c) 684 

changes in albedo change the net radiation, (d) changes in energy partitioning in sensible and 685 

latent heat and heat storage. The effect is an increase of the mean temperatures leading to 686 

warming effects in all tropical climatic zones (Alkama and Cescatti, 2016). We point here that 687 

our study (1) included a ground heat flux, but did not take into account the storage of heat in 688 

the soil and the release of stored heat out of the soil during the daily cycle and (2) that the 689 

Landsat satellite image was obtained under cloud free conditions with high shortwave radiation 690 

input and low fraction of diffuse radiation. Therefore, the LST retrieved on cloud free days 691 

might be overestimated compared cloudy days where the differences in LST between land uses 692 

are supposed to be less when diffuse radiation increases. 693 

 694 
Our study is the first to include the oil palm and rubber expansion in Indonesia. In Indonesia, 695 

smallholders take 40% of the land under oil palm cultivation for their account (Dislich et al., 696 

2016). Since the landscape in the Jambi province is characterized by small-scale smallholder-697 

dominated mosaic including rubber and oil palm monocultures (Clough et al., 2016), studies 698 

using medium to coarse resolution data are not able to capture the small scale changes and 699 

processes at the small-scale level. By using high resolution Landsat data we were able to also 700 

include the effects of land use change on biophysical variables and the underlying processes of 701 

the small scale holder agriculture. 702 

 703 
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4.4 Effects of land use change on the provincial surface temperature in the past decades 704 

 705 

The mean surface temperature of the Jambi province increased stronger during the morning 706 

(10:30 am) and afternoon (1:30 pm) than during the evening (10:30 pm) and night (1:30 am).  707 

Given that our results show a decrease of the NDVI in the same period, this suggests that the 708 

observed increased trend of the day time province LST can be attributed to land cover changes 709 

that occurred. Our assumption that the observed decreasing NDVI trend is caused by land 710 

conversions is supported by two different studies which reported that in the Jambi province 711 

between 2000 and 2011 (Drescher et al., 2016) and between 2000 and 2013 (Clough et al., 712 

2016) the forest area decreased and that the largest increases were for rubber, oil palm, and 713 

agricultural and tree crop areas. The class ‘other land use types’ which includes urban areas 714 

showed a minor increase (around 1%) which suggests that the decrease in NDVI was most 715 

likely caused by forest cover loss and not by urban expansion (see Supporting information, 716 

Table S9). The same observations on LULC change in Indonesia were also supported by Lee 717 

et al. (2011), Margono et al. (2012, 2014), Paterson et al. (2015) and Luskin et al. (2014). Luskin 718 

et al. (2014) showed that in the period 2000 – 2010 forests decreased by 17%, oil palm and 719 

rubber area increased by 85% and 19%, respectively, in the Jambi province. 720 

 721 

Given these trends in LULC changes, the observed LST trends were most likely caused by 722 

gradual decrease of forest cover loss at the expense of agriculture and croplands. Our 723 

assumptions are supported by findings of Silvério et al. (2015), Costa et al. (2007), Oliveira et 724 

al. (2013), Spracklen et al. (2012) and Salazar et al. (2015) which indicate that land use 725 

transitions in deforested areas likely have a strong influence on regional climate. Alkama and 726 

Cescatti's (2016) analysis show that biophysical effects of changes in forest cover can 727 

substantially affect the local climate by altering the average temperature, which is consistent 728 

with our observations and can be related to the observed land use change in the Jambi province. 729 
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As Indonesia has undergone high rates of forest cover loss from 2000 to 2012 (Margono et al., 730 

2014), these findings support our assumptions that the observed LST increase in the Jambi 731 

province was most likely caused by the observed land use changes. 732 

 733 

To separate the effect of global warming from land-use change induced warming, we 734 

considered areas with permanent and large enough forests as reference where changes are 735 

mainly due to global warming. We find that LST of forests show either no significant trends (at 736 

1:30 pm, 10:30 pm, 1:30 am) or just a clearly smaller increase of 0.03 °C per year at 10:30 am. 737 

The difference between the LST trend of the province and of the forest at 10:30 am was 0.04 738 

°C per year, resulting in a ΔLST of 0.6 °C between the province and forest in the period 2000 739 

and 2015. Using the warming effects we found between forest and other land cover types 740 

(ΔLST, Fig. 4a) and the observed land cover changes by Clough et al. (2016), Drescher et al. 741 

(2016) (Supporting Information S9, table S9.1 and S9.2) we estimated the contribution of all 742 

land cover types (except forest) to the ΔLST of the province between 2000 and 2015 to be 743 

0.51°C out of 0.6°C observed above, which also supports our assumption that the increase of 744 

the province LST was by 85% driven  by land cover changes (see Supporting Information 9, 745 

Table S9.1 & S9.2: Land use change analysis), with clear cut areas having a large contribution 746 

as they have the largest warming effect. 747 

 748 

The observed small, but significant increase in LST of forests by 0.03 °C per year at 10:30 am 749 

reflects a LST change independent to land cover changes as the forest remained unchanged over 750 

that time period. Potential driver of that LST increase is the general global air temperature trend 751 

due to changes in radiative forcing or border effects (advection from warmer land uses), which 752 

is  similar to the 1994 - 2014 time series analysis of Kayet et al. (2016) – who showed  a LST 753 

increase for all land cover types ranging from wasted land, agriculture land, open forest, dense 754 

forest, water bodies, built up.  755 
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 756 

The observed trends of province air temperature (Fig. 5f) were significant, suggesting that a 757 

general warming due to global and regional effects contributes to the observed warming at 758 

province level during day and night time, but is smaller than the land cover change induced 759 

effects (Supporting Information S9, Table S9.1 & S9.2) at provincial level (Fig. 5a and 5b).  760 

 761 

In our long term analysis on the regional effects of land use change we observed an increase in 762 

the mean LST and mean air temperature in the 2000 - 2015 period, concurrent to a decrease of 763 

the NDVI. The warming observed from MODIS LST data and from the air temperature 764 

obtained from the independent ERA Interim Reanalysis in the Jambi province are most likely 765 

caused by the observed decrease of the forest area and an increase oil palm, rubber and other 766 

cash crop areas in the same period, with other effects such as radiative forcing changes and 767 

additional natural effects playing a smaller role. Given the plan of the Indonesian governmental 768 

to substantially expand oil palm productivity with an projected additional demand of 1 to 28 769 

Mha in 2020 (Wicke et al., 2011), the strong warming effect we show for Jambi province may 770 

serve as an indication of future changes in LST for other regions of Indonesia that will undergo 771 

land transformations towards oil palm plantations.  772 

The observed effects of land use change on the biophysical variables may have implications for 773 

ecosystem services in the Jambi province beyond a pure warming effect. The high precipitation 774 

in this region in combination with the reduced vegetation cover of bare land and young oil palm 775 

plantations impose risks of soil erosion caused by surface run off. Less water infiltrates in the 776 

soil, thereby decreasing the soil water storage that may lead to low water availability in the dry 777 

season (Dislich et al., 2016; Merten et al., 2016). High surface temperatures in combination 778 

with low water availability may make the vegetation and the surroundings more vulnerable for 779 

fires.   780 

 781 
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5 Conclusion 782 

 783 

In summary, we showed the importance of forests in regulating the local and regional climate. 784 

We derived biophysical variables from satellite data, analyzed the biophysical impacts of 785 

deforestation and on a local scale we found a general warming effect after forests are 786 

transformed to cash or tree croplands (oil palm, rubber, acacia) in the Jambi province of 787 

Sumatra. The warming effect after forest conversion results from the reduced evaporative 788 

cooling, which was identified as the main determinant of regulating the surface temperature. 789 

On a regional scale, we saw that the effects of land cover changes are reflected back in changes 790 

of the LST, NDVI and air temperature of the Jambi province. The warming effect induced by 791 

land cover change clearly exceeded the global warming effect. Understanding the effects of 792 

land cover change on the biophysical variables may support policies regarding conservation of 793 

the existing forests, planning and expansion of the oil palm plantations and possible 794 

afforestation measures. 795 

 796 

  797 
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